Application of Halanay Inequality to the Stability of the Disease Free Equilibrium of a Delayed Malaria Transmission Model
نویسنده
چکیده
By the applications of Halanay type inequality and the theory of nonsingular M-matrix, the global asymptotical stability of the disease free equilibrium of a delayed malaria transmission model is obtained when the basic reproduction number of the model is less than 1.
منابع مشابه
Stability and Numerical Analysis of Malaria- mTB- HIV/AIDS Co-infection (TECHNICAL NOTE)
In this paper, we develop a mathematical model to examine the transmission dynamics of curable malaria, curable mTB and non-curable HIV/AIDS and their co-infection. The size of population has been taken as varying due to the emigration of susceptible population. The total population is divided into five subclasses as susceptible, malaria infected, mTB infected, HIV infection and AIDS by assumin...
متن کاملDynamics of a Delayed Epidemic Model with Beddington-DeAngelis Incidence Rate and a Constant Infectious Period
In this paper, an SIR epidemic model with an infectious period and a non-linear Beddington-DeAngelis type incidence rate function is considered. The dynamics of this model depend on the reproduction number R0. Accurately, if R0 < 1, we show the global asymptotic stability of the disease-free equilibrium by analyzing the corresponding characteristic equation and using compa...
متن کاملMathematical Model of Novel COVID-19 and Its Transmission Dynamics
In this paper, we formulated a dynamical model of COVID-19 to describe the transmission dynamics of the disease. The well possedness of the formulated model equations was proved. Both local and global stability of the disease free equilibrium and endemic equilibrium point of the model equation was established using basic reproduction number. The results show that, if the basic reproduction numb...
متن کاملMathematical Model for Transmission Dynamics of Hepatitus C Virus with Optimal Control Strategies
An epidemic model with optimal control strategies was investigated for Hepatitus C Viral disease that can be transmitted through infected individuals. In this study, we used a deterministic compartmental model for assessing the effect of different optimal control strategies for controlling the spread of Hepatitus C disease in the community. Stability theory of differential equations is us...
متن کاملStability analysis of the transmission dynamics of an HBV model
Hepatitis B virus (HBV) infection is a major public health problem in the world today. A mathematical model is formulated to describe the spread of hepatitis B, which can be controlled by vaccination as well as treatment. We study the dynamical behavior of the system with fixed control for both vaccination and treatment. The results shows that the dynamics of the model is completely de...
متن کامل